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Abstract.

The two-center ICAO methbd, which has been u;ed frequently in the
past to stﬁdy the motion of electrons in solids, is used here to investi-
gate the nature of bonding between atoms in TiC. It is found that prominent
contributions to the bonding in this materiél arise from metal-metal inter-
actions similar to those in the transition metals. In TiC, however, these |
interactions are strengthened by the effect of carbon atom core potentials
in the regions of overlap between metal orbitals. Moreover, the number of
electrons participating in such interactions is increased by electrons trans-
ferred from carbon to metal orbitals. Additional bonding, with substantial
covalent character, is contributed by the carbon atoms as a result of metal-

carbon and carbon-carbon interactions. Tonic interactions also are present

because of the electron transfer between atoms, but they appear to contribute

little to.the cohesive energy of TiC.

These results provide support for proposals advanced by Kiessling
and by Robins to explain fhe bonding in refractory hard metals. They are not
in accord with thé e#planation offered by Rundle.

It is suggested that the close relationship between band structure
and bonding-illustrated here for TiC can be used to advantage also in studies
of the bonding in transition metals and in other materials that exhibit com-

plex bonding characteristics.



Band Structure and Bonding in Titanium Carbide.

'I. Introduction.

‘ The. properties of solids may be described either in terms of energy
bands or iﬁ terms.of chemical bonds. Although accurate calculations of elec-
trpnic energy bands in a solid provide sufficient information to explain
.many physical properties, the results of such calculations are somewhat un-
satisfgctory for visualizing the bonding between atoms of the solid. The
chemical bgnd approach, on the other hand, although less satisfactory for
quantitative calculations of physical properties, does provide a useful
rgpresehtation of the bonding.

Several years ago, Hall (1) and Slater (2) suggéstéd ways in which
crystal wave functions determined from energy band calculations might be com-
bined to generate equivalent bond orbitals closely related to those used in
the chemical bond description, but little use appears to have been made of
this correspondence between the two approachés. One reason for this is the
fact that the equivalent orbitals often are not describable in simple form.
Nevertheless, even a qualitative analysis of the bonding may bé valuable for
understanding certain physical properties, particularly of those compounds
in which complex mixtures of various types of bonding occur. The purpose of
this paper is to present for one such compound, TiC, a preliminary description
of the Bonding which khas been obtained directly from calculations of its energy
band structure. The present description is incomplete because only those com-

ponents of _the equivalent orbitals have been included that provide the more
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prominent contributions to bonding. Subsequent work, however, will be
directed toward calculétion of complete equivalent orbitals in the manner
suggested by Slater and Hall.

. Titanium carbide was chosen for this study because the nature of
its bonding has been fhe subjeét of speculation for many yeafs. It is one
of the more familiar members of a group of subsfances, commonly referred to
as refractory hard metals, that are formed by reacting a transition metal
from Groups IV to VI with one 6f the small nonmetallic elements such as
boron?'carbdh, nitrogen,-and oxygen. The unusual properties of these com-
pounds have been discussed in detail by Schwarzkopf and Kieffer (3) and by
Kieffer and Benesovsky (L): Together with the high melting point and great
hardness characteristic of such covalent solias as diamond, they exhibit
electrical conductivities comparable with those of the parent transition
metals (5).. Such a combination of covalent and metallic properties has led
to rather divergent opinions regarding the nature of these compounds.

Possibly the earliest consideration giveﬁ to the problem occurred in

1931 during Ubbelohde's study (6) of the palladium-hydrogen system, from which
he inferred that hydrogen donated electroﬁs to £i1l1 héles in the 4 5and of
palladium. Ubbelohde then suggested that nonmetal atoms in other interstitial
compounds of the transition metals might behave in the same way. In 1943,
Unanskii (7) discussed the hardness of inteéstitial phases and the electro-
»‘TmigratiOnﬂof7carbon'an&fﬁifrogeﬁ7in iron. He concluded that Ubbelohde's views
applied in these circumstances also. Rundle, on the other hand, proposed in

1948 (8) that for refractory hard metals the electron transfer was in the other
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direction, that'is, from the metal to the nonmetal atom. He argued that,
because the metal-metal atom sbacings generally are greater in the refrac-
tory hafd metals than in the parent transition metals, the metal-metal
bonds must be weaker in the hard metals than they are in the parent metals.
Thus, he suggested that electrons must h;ve veen lost from the metal-metal
bonds, and accordingly attributed the increased melting points, hardness and
brittleness of the hard metals to tﬁe formation of strong directional bonds
between metal and nonmetal atoms. Subsequent experimental work by Kiessling
(9) indicated, however, that electrons are transferred from the nonmetal to
the metal atom. Kiessling (10), in 1957, proposed, therefore, that the
bondirg in hard metals is essentially metallic in nature, but suggested that
covalent and ionic bonding also may be present in certain of these compounds.
Robins (11) presented a similar model for the bonding in 1958, but emphasized
the effects of electron concentration and coordination of the metal atoms.
In 1958, éilz (12) atteﬁpted to distinguish between the alternatives
of strong metal-nonmetal bonding (Rundle) and strong metal-metal'bonding
(Xiessling and Robins) by considering the properties expected in each case
for a (hypothetical) titanium hard metal, TiX, related to TiC, TiN, and TiO,
&nd having the same rocksalt structure. For each type of bonding, he esti-
mated the distribution in energy of electronic states in a molecular unit,
Tiéx, having the same atomic configuration that it would have in a crystal
of TiX. The resulting density-of -states curves were compared with an equiva-

lent curve obtained from a caiculation of the electronic energy band struc-

ture for the hypothetical TiX crystal. This calculation was performed following
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the simplified LdAO (linear combination of atomic orbitals) method of Slater
and Koster (13), which will be discussed later. For the interaction integrals
of TiX required in the caleculation, Bilz used values estimated from previous
calculations for nickel and copper; for the one-electron energies of the X

atom he used the éverage of values for carbon, nitrogen, and oxygen. He con-
cluded that the density-of-states curve obtained from this calculation repre-
sented an intermediate condition in which the ﬁonding included both metal-metal
and metal-nonmetal interactions. His band structure requires a substantial
transfer of electrons from'states of the metal atom to states of the nonmetal
atom, and thus supports the model proposed by Rundle.

Dempsey (5), in 1963, presented érguﬁénts that support Kiessling's des-
cription of the refractory hard wmetals. Dempséy discussed similarities between
the properties of transition metals and refractory hard metals that have approxi-
mately equal numbers of d electrons. He concluded that the close correlations
observed could be accounted for if (i) the bonding in refractory hard metals is
similar to that in transition metals, and (ii) electrons are transferred to the
transition metal d band from the nonmetal atoms. Dempsey suggested also that
covalent bonding involviné the nonmetal atoms does not play an imﬁortant role;
thus,'his analysis leads to conclusions almost opposite to those of Rundle.,

More recently (1964), Costa and Conte (1L4) computed band structures
for TiC and TiN using the Fletcher (15) approach to the ICAO methed. Their
calculations indicated a considerable strengthening of the interactions between
metal d orbitals by the potential of carbon atoms located in their vicinity -

an important effect which had not been considered previously. Accordingly Costa
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and Conte suggested that metal-metal interactions were more important than
-Bilz had supposed, but they acknowledged that few experimental data then
available contradicted Bilz's band structure.

In 1965, Ern and Switendick (16) computed separate band structures
for TiC, TiN, and TiO using the APW (augmented plane wave) method. Their‘
results supported in most respects the earlier calculations by Bilz.

Unfortunately, these models for the refractory hard metals could not
be evaluated adedﬁately in the past because of the lack of qppropriate
experimental data. Recently, however, some of the required information has
been made availafle for TiC from Iogothetis' (17) determination of its optical
propefties over a wide range of photon enéfgies. These data have been used by
Lye (17) to guide new ICAO calculations of an electronic energy band structure
for this material, and the results have been employed to develop a description
of the bonding in TiC. ‘Although this new band structure is markedly different
from those obtained from previous calculations, the nature of the bonding it
implies includes aspects of most of the earlier descriptions, differing from
them primarily in emphasis.

In the present paper, the LCAO‘method and its relation to familiar
concepts of bonding will be described in Section II. The band structure for
TiC computed using this method will then be discussed in Section III, and a
gualitative description of the bonding inferred from the calculations will be
given in Section IV.I This model for the bonding in TiC‘will be discussed

with reference to its physical properties in Section V.

—
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II. Band Structure Calculations by the LCAQ Method.

A useful approximation to the electron energy band structure of TiC
may be obtaigeg using the simplified two-center LCAO (linear combination of
atomic orbitals) method suggested by Slater and Koster. The LCAO methed has
been described extensively elsewhere (13, 18722); only qualitative aspects
will be discussed here. 1In this discussion, however, mathematical arguments
will be presented, where possible, in pictorial form to illustrate this techni-
que fﬁr computing electronic energy bands and to demonstrate visually the
bonding which results from interactions between atomic orbitals.

In the LCAO approximation, crystal wave functions are constructed from
atomic wave-functions (orbitals) which are centered on the sites, Rj’ of the
crystal lattice. The atomic orbitals contribute to the crystal wave function
of wave vector k according to the complex weighting factor exp(ik.Rj), which
establishes for each value of k and Rj the phasg of the orbital at Rj with
respect to the one on‘the.atom chosen as the origin. Spherically symmetric
atomic s functionms, qé(r), for example, form crystal wave functions, @S(k,r),

which are represented (as Bloch functions)in the form:
¢S(k,r) = ? exp(ik-Rj)qg(r-Rj).

That is, around each atom of the solid, at the lattice sites labeled Rj’ the

‘crystal wave function looks much like the original atomic s function. In

particular, at the center of the Brillouin zone (k=0), the crystal wave function

—
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is approximately an array of atomic s functions with the same phase on each
atomic site, as shown in Fig. 1 for a simple cubic crystal. (The orbitals
are drawn reduced in size for clarity; some overlap between them is neces-
sary to permit interactions to occur.)

Atomic ofbitals on one atom overlap onto adjoining atoms and inter-
act with the orbitals on those atoms through the total potential,
V(r) = .Zéva(r-Rj), which is the sum of atomic potentials, Va(r’Rj)’ from
all theai;ighboring atoms. The strength of the interaction, J(RB), between
the wave func%ions qh(r) on atom A and qh(r—RB) on atom ig displaced by the
vector RB from A, is determined by integrating the products bf the wave func-

tions and the potential over the volume of the crystal, T, in which the wave

functions overlap:

J(RB)= / qﬁ(r-RB)Jizéov a(r-Rj ) Q)A(r)d'r .

In the two-cehter_approximation, the principal contribution to the
potential is assumed to arise from just the atom on which the'interacting
wave fﬁnction resides. This simplification permits the interactions to be

described in terms of the two-center integrals,

Jor(r-Rp )V, (r-Rp) 9, (r)ac

”

familiar from the study of diatomic molecules. Moreover, this approach leads
directly to a pictorial representation of the bonding in solids which is closely

analogous_to the common ‘description of bonding in molecules.
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Fig. 2. - Interactions between atomic orbitals: (a) bonding, (b) antibonding.
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For the purposes of this discussion, it is necessary to employ a
specific meaning for thé term "bonding". The term has been used iﬁ a variety
of ways in the literature, sometimes with essentially the seme meaning as
cohesive energy. However, a distinction will be made between the two terms
in what is to follow: Cohesive energy will be used in the usual way to
designate the difference (at OOK) between the energy of one mole of isolated
atoms and the energy of those atoms when assembled in the periodic configura-
tion they assume in the solid state. The terms "bonding" and 'antibonding",
on the other hand, will be used to describe interactions between atoms in the
solid'array. Bonding duve to electrostatic interactions between atoms is the
familiar ionic bonding, and can be correlated with the ionic contribution to
the cohesive energy. The electronic contribution to bonding results from
interactions between wave functions associated with different atoms and can
be either bonding or antibonding. Overlap of functions with the same sign
decreases their energy by increasing the amplitude near the béundary of the
polyhedron surrounding the'atom and decreasing tﬁé amplitude inside’(since
fq*qu is a constant within the polyhedron). The wave function-is made smoother
by the overlap, as shown in Fig. 2(a); thus, the kinetic energy,
éﬁé j[gradép[zd'r, is decreased (18). The amount of the decrease is determined
by the magnitude of the two-center integral representing this interaction.
Bonding that results from such interactions is determined in the same way as
is the change in electronic energy: Since the electronic energy is lowered
by overlap of orbitals with like sign, the energy is decreased by bringiné ths

atoms together; thus, the atoms are attracted to each other by bonding inter-

actions. Conversely, the electronic energy is increased when orbitals of
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opposite sign overlap, as shown in Fig. 2(b); under such circumstances,

the atoms repel each other by antibonding interactions. This éomponent
‘of bonding between atoms can be calculated, therefore, from the same two-
center integrals that determine the change in electronic energy. The co-
hesive energy that results can be considered either as the sum of interac-
tions between atoms or as the net change in energy of the electrons.

Atomic s states. The two-center approximation thus provides a means

for computing the electronic energy bands in a solid and, at the same time,
indicates the nature of the bonding between atoms. For example, the inter-
action between the central atom and each of its nearest neighbors in Fig. 1

can be represented by the gquantity

ssca=fq§(r-a)v(r-a)qé(r)dx

in which the symbol ssg, indicates a sigma interaction betﬁeen two s func-
tions on atoms a distance a apart. (Similar nomenclature will 5e used later
for the two-center integrals representing interactions between other atomic
functions.) In the two-center approximation, the to?al éhange in energy of
the electron relative to its energy in-an isolated atom is a simple sum of
the contributions from interactions between one orbital and all nearby'orbi-
tals. Since the orbital on the central atom in Fig. 1 has the same phase,
indicated by the plus sign, as those on the six neighboring atoms, it forms

bonding ssg interactions with each of these orbitals. As a result, the energy
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of the crystal wave function, répresented in the figure for k=0, is depressed
by 6lssca] from the energy of the s state in the free atom.

When the momentum of the crystal wave function differs from zero,
the orﬁitals on atoms at lattice sites Rj have to be multiplied by appro-
priate pha;e factors,-exp(ik-Rj). Crystal wave functions that result are
illustrated schematically in Fig. 3 for wave vectors at the Brillouin zone
boundaries, k=(1,0,0)m/a, k=(1,1,0)r/a, and k=(1,1,1)n/s, of a simple cubic
crystal with lattice spacing a. When k=(1,0,0)r/a, Fig. 3(a), the phase factor
changés by. eiﬁr:-l for every lattice translation + a along the x direction in
the crystal, but it is the same for all atoms in each y-z plane. The four
nearest neighbors in the y-z plane have the same sign as the central atoms
and are again in bonding configuration. Orbitals on the two atoms at (ia,0,0),
however, have the opposite sign; thus, they are in ahtibonding configurations
relative to the one on the central atom. The four bonding and two antibonding
interactions provide a net contribution of two bonding ssg interactions. The
state k=(1,0,0)r/a is, therefore, only one -third as strongly bonded as the
state k=0.

When k=(1,1,0)m/a, the s function on each atom is in bonding configura-
tion with two of its nearest neighbors at (0,0,+a) and in antibonding configura-
tion with four at (+a,0,0) and (0,+a,0) to produce a net contribution of two
antibonding ss¢ interactions. When k=(1,1,1)r/a, the s function on each atom
participates in six antibonding ssg interactions with its nearest neighbors.

Equivalent results, of necessity, are obtained from direct calculations of the
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Table I
o x Net ssg bonding with
k (units of mw/a) Energy nearest neignbors
0,0,0 so+65sda 6 bonding
1,0,0 _sb+QSsca 2 bonding
. L1,0 sO-ESsUA 2 antibonding
1,1,1 so-6ssga 6 antibonding

Table I: Electronic energy and atomic bonding of s functions
in a simple cubic lattice calculated by the nearest-

neighbor, two-center, ICAO approximation. 8_ is approxi-

o

nately the energy of the s state in an isolated atonm.
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energy using the nearest—neighbof two-center ICAO approximation, which pro-
vides the mathematical basis for this description of bording. Energies
calculated in this way for crystal wave functions formed from esn atomic s
state are liste@ in Table I for points in the Brillouin zone at which the
bonding has been discussed. The degree of bonding between s functions on
nearest neighbor atoms is listed for comparison.

At an intermediate point in the Brillouin zone, k:(kx,ky,kz), the
wave functions are multiplied by complex phase factors, exp(ikoRj). The re-
sult is not readily presenﬁed pictorially, but the energy and bonding can be
calculated directly: Wave functions on the two atoms at (+a,0,0) have phase
factors exp(iikxa) and the sum of interaction between these two‘wave func-~
tions and the one on the central atom is ssaa[ekp(ikxa)+exp(-ikxa)]=QSSgacosk¥é.
Similarly, wave functions on the two atoms &at (O,ia,o) have phase factors
exp(iikya) and the sum of their interactions with the wave function on‘the cen-
tral atom is 2sscacoskya. In the same way, the tyo atoms at (0,0,ig) contri-
bute ESscacoskZa. The total interaction with the six nearest neigﬁbors is,
therefore, stca(coskxa+coskya+coskza). The energy and bonding thus vary con-
tinuously through the Brillouin zone from the lowest enérgy (strongest-bonding)
at k=0 to the highest energy (strongest antibonding) at k=(1,1,1)m/a.

Atomic p states. If the outer atomic states are p states, the energy of

crystal wave functions formed from them and the bonding interactions between them
vary with momentum in a different way. The atomic p state is triply degenerate,

that is, the three states with wave functions xf(r), yf(r), and zf(r), have the
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same energy in the free atom. ‘Two types of p-p interactions are possible,
the ppo and the ppr interactions illustrated in Fig. Y, The p functions
shown in ¢ orientation are in the ppo antibcnding configuration whereas the
7 oriented functions are bonding. Note, however, that the ¢ oriented func-
tions would becoée'bonding and the T oriented functions antibonding by rever-
sing the signs of one function in each pair.

Fig. 5 shows. the configuration of Py functions in a simple cubic lat-
tice for k=0. The central atom interacts with its nearest neighbors along
the x a#is to fo;m two antibonding ppo bonds, eﬁd forms feur‘bonding ppT bonds
with nearest neighbors in its y-z plane. The py and P, functions behave in the
same way at k=0; the p functions remain triply degenerate for this value of
momentum. Fig. 6 shows the configuration of p, functions at k=(1,0,0)m/a. In
this case, the central atom again makes four bonding ppr interactions with
ﬁeighboring atoms 1n its y-z plane, but now is in bonding ppo configuration
with the two neighboring atoms in the x direction. The py functions behave
quite a.fferently, as shown in Fig. 7. The Py function on the central atom
makes two antibonding ppr interactions in the +x direction, two bonding ppm
interactions in the +z direction, and two antibonding ppg interactions in the
+y direction. Thus, the Py functions are antibonding at k=(1,0,0)1/a, whereas
the P, functions are in bonding configuration at this point in the Brillouin
zone. The D, functions are degenerate with the py fﬁnctions along the (l,0,0)

direction in the Brillouin zone.
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Atomic d states. Three types of interactions are possible for 4

functions, ddg, ddw, and ddd, as illustrated in Fig. 8. The interaction
of two d functions frequently involves all three types of bonding. Magni-

tudes of the separate contributions can be calculated by resolving the

~

functions into ¢, 7, and ® components. The results are available in
Table I of the paper by Slater and Koster (13).

Hybrid interactions. When outer electronic states of different

symmetry have comparable energies in the isolated atom, it is no longer
possible to consider separately the crystal wave functions derived from

these states because interactions between'them are possible for certain
values of their momenta. As a result of such interactions, the crystal wave
functions become hybridized and contain contributions from each of the inter-
acting states. Each of the n different crystal functions, Yn(k,r), formed
from the n atomic states, qh(r), is then written as a sum of Bloch func-

tions, (Dm(k,r) :
5 (k,r) =ra . (x )cbm(k,'r),

in which

Qm(k,r)=§. exp(ik-Rj)cpm(r—Rj),

as for the s functions discussed before. In this case, however, the Bloch
functions, @m(k,r), have to be constructed, not from simple atomic functions,
but from appropriate combinations of the atomic function on the central atom

and other functions on the surrounding atoms. These (orthcgonalized) com-

binations retain the symmetry of the wave function on the central atom;
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consequently, they will be referred to as s, Pys soes d

s «esy functions,
Xy

as though they were simple atomic orbitals.

‘The intersctions which cause hybridization are represented by two-
center‘integrals, spg, sdg, pdo, pdw, similar to those which describe inter-
actions beéween like orbitals. Interactions between unlike orbitals occur
only when their spatial symmetry properties are appropriate for the momentum
of the crystal wave function, and the resulting effects are important only
when bands derived from the unperturbed states have approxiwmstely equal ener-
gies. 'Thus, s functions interact with P, functions when both have momenta
(o<|k|< w/a) along the [1,0,0] direction of a cubic crystal, but not when their
momenta are in the [0,1,0] or [0,0,1] directions. Hybridization of s and P,
functions can be represented schematically for a face-centered-cubic crystal
as follows: The unperturbed s states form crystal wave functions which have
the configuration shown in Fig. 9 for k=(1/2,0,0)r/a. Similarly, the unper-
turbed px function has the configuration shovn in Fig. 10 for the same value
of momentum. The energies, Es and Ep, of these crystal wave functions can be
calculated by summing interactions between the qentral atom and its nearest
neighbors, as was done previously for the simple cubic_lattice; The results
are available, for a general point of the Brillouin zone, in Table IIT of the

article by Slater and Koster (13):

E =s _tissg(costcosnteosieost+eosncost)
Ep=po+2ppg(cosgcosn+cosgcos§)

+2ppr(costcosnteosgcost+2cosneost ),
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hybridized s-p bands,
f.c.c. lattice

ENERGY

O T/0
k=(k,,0,0)

Fig. 11. - Electronic energy bands along the direction k=(k,,0,0) in the
Brillouin zone of a face-centered-cubic crystal with lattice constant 2a.
Atomic s and py functions mix to form hybrid crystal wave functions. Energies
of these hybrid functions are displaced from the energies of crystal wave func-
tions formed from pure s and pure p, atomic orbitals by amounts determined by
the degree of mixing. p,, and p, functions do not mix with s functions along
this direction in the Brillouwin zone, but they do in crystal wave functions
that have momenta along the directions of their respective principal axes.
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where §=akx, q=aky, §=akz and 5o and p, are approximately the energies of the
atomic s and p states. FEnergy bands calculated in this way for momenta along
k=(kx,0,0) are shown by the dashed lines in Fig. 1l.

‘When hybridization of these states occurs, the wave functions contain
both s and p% components, withAfhe p-component carrying a phase factor
exp(jn/2)=ji relative to the s component. The px component of the wave function
on the central stom interacts with the s component of the wave function on sur-
rounding atoms in one of the two ways shown in Fig. 12 (a) or (b). The bonding
spc intéractions in (a) occur in the band of lower energy and depress its energy
at k=(l/é,0,b)ﬂ/b by (8/~fé)spc times the product of the amplitudes of the s
and p_ functions, whereas the antibonding interactions in (b) occur in the band
of higher energy and raise its energy by the same amount.

Since both hybrid states contain s and Py components, calculation of

their energies proceeds by solving simultaneous equations for the energy, E,

of each state:

(HSS-E)aleHSPalp=o

.+ ~-E)a, =0
HpsaZP <HPP E) 2p 7’

in which als and alp are the amplitudes of the s and px functions, respectively,

in one hybrid crystal wave function, and a a,_ are thelr amplitudes in the

2s’ "2p
other. The matrix component of energy HSS is simply the sum of interactions
between an s function on the central atom and s functions on neighboring atoms,

whereas HSp is the sum of interactions between an s function on the central atom
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and p functions on its neighbors. Hfs(;HSp) and pr are the corresponding sums
for a P, function on the central atom. These sums (matrix components of
energy) are tabulated for cubic crystals in Table ITI of the article by

Slater and Koster (13). Miasek (23) has listed the appropriate sums for
hexagonal crys%alé‘also.

Energy bands calculated in this way for hybrid S-p, bands are shown
for momenta along k=(kx,0,0) by the solid lines in Fig. 11l. The Py and p,
functions do not mix with s functions along this direction in the Brillouin
zone. .

Hybridization does not affect the cohesive energy so long as both of
the states which interact are occcupied by electrons, since equal numbers of
states are raised or lowered by equal amounts. If the states of higher energy
are vacant, however, hybridization increases the cohesion by causing an uncom-
pensated increase in the bonding of lower states. Such an effect is illus-
trated in the hybrid 8-p bands of Fig. 11, If the number of electrons per
atom is less than two, states of the lower band'only are occupied and hybri-
dization increases cohesion by increasing the strength of bondihg of electrons
in the lower band. If the Fermi level lies above the top of the p.band at
Pl5’ however, both the s and p bands are occupied and no net change in cohesion
results from the s-p hybridization Eecause'the incrgased bonding of the lower

states is cancelled exactly by weakened bonding in the upper states.
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LEVEL

ENERGY (eV)

-12
L I X

Fig. 1Z. - Energy bands along two directions of high symmetry, A and A, in
the Brillouin zone of TiC, calculated using the simplified LCAO method of
Slater and Koster (Ref. 10). A designates poir<s in the fece Brillouwin- zone
on the line from I' (k=0) to X (k=(1,0,0)7/a). XA designates points on the line
from T to L (k=(1/2,1/2,1/2)r/a). [From R. G. Zye and E. M. Logothetis, Phys.
Rev. 147, 622 (1966).]
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ENERGY (eV)

_ ! | | i
12 ] |

STATES OF ONE SPIN / (ev MOLECULE)

Fig. 14. - Density-of-states histogram for TiC derived from the band structure
of Fig. 13. Ferni levels are indicated for six, seven, and eight electrons
respectively. [From R. G. Lye and E. M. Logothetis, Phys. Rev., _J;L_L_ZL 622
(1966). ]
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IIT. Band Structure of Titanium Carbide.

The energy band structure of TiC was calculated by Lye (17) accord-
ing to the approach outlined in Section IT but using, in addition, the further
simplification‘suggested by Slater (13): Instead of‘attempting tedious and
uncertain calcélations of values for the two-center integrals, these inte-
grals were used as adjustable parameters which were varied to make the com-
puted band structure agree with experimental data. Measurements of the near-
nérmél~incidence reflectivity (17) provided energies of prominent optical
transitions to,which the calculated band energies had to be adjusted. Other
information was provided by studies of thé energy dependence of photo-
emission (17), and by measurements of the Hall coefficient (24,25) resisti-
vity (24), piezoresistance (26), and thermoelectric power (27).

The energy band structure obtained by this method is shown in Fig. 13
for directions in the Brillouin zone from the center,‘r, to boundary points
X and L at (1,0,0)m/a and (1/2,1/2,1/2)n/a respectively. A total density-
of-states curve obtained from the same calculatisn is shown in Fig. 14, and
tindividual’ density-of-states curves are shown in Fig. 15 for thé atomic states
from which the crystal wave functions were derived.

The energy band structure determined by this method differs from that
obtained by Bilz (12), shown in Fig; 16, in two important respects. First,
the 2p bands of carbon, which are labeled r15 at the center of the Brillouin
zorne lie 8 eV above the emergy calculated by Bilz. Secd%d, as indicated also

in the density-of-states curve of Fig. 15, the d band is far broader than that

computed‘%y Bilz.
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Elevation of the 2p states is a consequence of several effects.

Part of this e;evation, h_eV, results.simply from using the energy of the
atomic p state of carbon instead of the averaged value of.carﬁon, nitrogen,
and oxygen adopted.by Bilz, The fact that pronounced éhanges in the band
structure result from the use of a différent vaiue fof this energy demon-
strates that no single energy band structure can be used to represent, with
useful accuracy, the three compounds, TiC, TiN, and TiO.

Purther elevation of the 2p states (1.5 eV) results from the use of
ppo interactions between carbon 2p orbitals somewhat stronger than those em-
ployed by Bilz.g The modification can be Justified in the same way as is done
later for the 2%d-33 interactions in the discussion of the breadth of the
d-band.

Titenium Yp-wave functions, which were not considered by Bilz, inter-
act with the carbon 2p states and lowsr their energy at the center of the
Brillouin zone, I', by approximately O.4t eV. An additional elevation of
2.77 eV is necessary, theréfore, to account for tﬁe optical properties of
TiC, and a similar displacement is required for the carbon 2s states. If this
remaining elevation of carbon states relative to the titanium states is attri-
buted solely to electrostatic effects determined by the Madelung potential
.difference, Zozez/é (28,16), it corresponds to a charge transfer of approxi-
mately 0.15 electrons from carbon to titanium atoms. The magnitude of the
charge transfer needs to be determined more precisely, buﬁ the present esti-
mate indicates that ionic %onding contributes only a small fraction (~ 1%) of

the total cohesive energy, 327 kcal/hole calculated from thermodynamic proper-

ties (29-31).
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Broadening of the d-band may be explained on the basis of work
by Costa and Conte (14). They showed that d-d interactions between metal
atoms are strengthened markedly by the potential of carbon atoms in the octa-
hedral interstices of the fcc titanium sublattice. By similar arguments, it
is expected that 6ther metal-metal and carbon.carbon interactions may be some-
what stronger than the values suggested by Bilz.

As & result of the strong d-d interactions, bonding states of the
d-band are depressed in TiC to energies lower than they would have in
(hypothetical) fcc titanium, or in normal hep titanium metal. The presence
of these low-lying 4 states contributes greatly to the total cohesion. Suffi-
cient numbers of the states are. available to accept not only the 3d electrons
originally on the titanium atom, but also some of the is electrons of titanium
and scme of the 2p electrons of carbon. The density.of-states curves of
Fig. 15 indicate that the electronic configurations of the atoms in TiC are
approximately_(23)2(2p)3/h for carbon, and (Ed)h(hs)B/h(hp)l/2 for titanium.
Since the isolated atoms have the configurations (23)2(2p)2Vand (5d)2(hs)2,
it appears that approximately 1 ;/h electrons have been transferred from carbon
2p states to levels derived from titanium atomic states. The ﬁet cﬁarge trans-
fér, however, 1s less than this amount because the metal wave functions overlap

again onto the carbon atom sites.
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IV. 3Bonding in Titanium Carbide.

Although the calculated band structure is tentative and subject to

considerable refinement by more precise methods of analysis, it may be used

~
-

to provide a preliminary interpretation of the bonding in titanium carbide.
A qualitative description of the bonding may be obtained by considering the
amplitudes and interactions of atomic functions present in the computed
crystal wave functions associated with occupied electronic states. Wave
functions have been examined in this way for-points in the'Brillouin zone
along the directions I'-X and I’=I, in the énergy bands of Fig..lE. The results
suggest the possibility of constructing equivalent orbitals in the manner
proposed by Hall (1) and Slater (2). For the present, however, only contri-
butions to bonding from individual atomic and simple hybrid orbitals will be
described.

It will be noted that ca;bon 2s states contribute little to the bond-
ing; they are almost completely occupied (Fig.'lS) and, consequently, con-
tribute almost as many antibonding as bonding interactions. The bonding they
“do contribute results primarily from effects of hybridization with carbon
2p states near k=(1/2,0,0)m/a and with wetal 3d, bs, and Lp states near the
Briilouin zone boundaries.

The titanium 3d electrons contribute to the bonding through simple d-d
interactions and through s~d and p-d hybridization. The effects of such

hybridization may be illustrated by considering first the simple d-d interactions.
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(1,0,0)w/a)

d3x2 _y2 functions

at X (k

Fig. 17. - Bonding interactions between dy orbitals, with symmetry Bxe-rg, at
the Brillouin zone boundary k=(1,0,0)m,a of TiC (lattice constant 2a)., The
four orbitals in the y-z plane each form 14 dda—lﬁ/l,L ddd bonding interactions
with the central orbital. The eight orbitals at (ta,+a,0) and (+a,0,+a2) each
form 3/4 ddr bonding interactions and 1/16 ddo'+’j/lg dd% antibonding inter-
actions. Most of the bonding is provided by the ddy contributions.
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One of the major contributions to d-band bonding arises fram interactions
near the Brillouin zone boundary at X (k=(1,0,0)7/a) between 34, orbitals with
5x2—r2 symmetry*. Their configuration at X is illustrated in Fig. 17. The
ddr component of dnteractiocn between the orbitais at (i@:iﬁ:o) and (i&;G;ia)
and the central orbital provides most of the bonding nzar X, but leads to a
net antibonding interaction at r12’ These BQr orbitals hybridize with ks
orbitals near X, thereby increasing the cohesion because the upper hybrid
states are vacant. The energy of EQr-hs hybrid states is lowered through
interactions like those shown in Fig. 18 for k=(1,0,0)r/a.

In eddition, the 34 states are depressed near k=(1/2,0,0)1/a as a
result of interactions with carbon 2px states, as shown in Fig. 19. Such
interactions contribute to metal-carbon bonding and further increase the co-
hesion since the upper hybrid states again are largely unoccupied. Although
considerable hybridization of these states occurs with carbon 2s states
also, no net change in cdhesion results because both hybridized states are
occupied. Energy levels associated with these states fall in the bands

1 2

3
labeled Al, Al’ and Al

Very similar interactions occur along the (l,l,l) direction in the

in Fig. 13

Brillouin zone with 31 orbitals formed from linear combinations of de wave
functions. The resulting orbitals have the same shape as those illustrated

in Fig. 17 but have their principal axes directed along body diagonals in the

*The d functions form two groups in a cubic crystal, the three dE functions,
which have symmetry xy, yz, and zx; and the two dr functions, which have
symnetry jxg—r2 and z2~y2. Orbitals with'dE sympetry form wave functions in
the state F2,5 (Fig. 13), those with dY symmetry form wave functions in tke

state P12' Atomic orbitals with s, p, and & symmetries are illustrated in

Fig. 9 of Ref. 22.
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Fig. 21. - Isolated view of the d4__ orbitals at (0,0,0), (a,0,a), and
(0,-8,-a) in Fig. 20. Iz
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crystal, Interactions between them are strongly bonding, and again, they
hybridize with Ls and 2p orbitals to increase the bonding further. Energy
levelsAfor.these states fall in the bands ;Al’ ?Al’ and ?Al.

Additional d-band bonding arises élong the (1,0,0) direction of the
Brillouin zone from interactions between de orbitals with yz symmetry. The
strongly bonding configuration at the zone boundary X (k=(1,0,0)1/a) is
illustrated in Fig. 20. The central orbital and the orbitals at (O,ia,ia)
contribute a strong component of ddg bonding and a weak component of ddd
bondiﬁg, whereas the orbitals at (+e,+a,0) and (+a,0,+a) contribute strong
ddr bonding and weak ddd® antitonding interactions. The bonding of orbitals
at (0,-a,-a) and (a,0,a) with the orbital at (0,0,0) is emphasized in Fig. 21.
These orbitals do not interact with Us, 2s or 2p orbitals along the (1,0,0)
direction in the Brillouin zone. Energy levels associated with these orbitals
lie in the band Ae,.

Additional metal;metal bonding is contributed by the Us orbitals in
crystal wave functions with momente near k=0. Although considerable hybridi-
zation occurs between 4s and 2s orbitals, little net change in cohesion re-
sults from the mixing because both hybrid states are occupied near the center
of the zone.

A small component of metal-metal bonding is contributed also by the
bp orbitals of titanium, which are unoccupied in tﬁe free atom but become

occupied near the zone boundaries in the solid. The 4p orbitals are occu-

pied, however, only in hybrid wave functions in which they are a minorA



- k6=

OTI UT STRITAX0 “dg usamqoq 8/L(0°0 “T)=¥ 3® suoTyoBID

(D/£{0'0'L) =%) 4D
s|p}1g40 *d 2 ~

N
+\
>

‘(B2 uBysUOD 80T39%T)
quT Surpuod - °gz °*JTd




- b7 -

*SmMOqB UOQIBO JUTIOQUITSU UO STBITYIO xmm ‘moqe WTURLTY TBIIUSD
U0 TBITAIO xm: {(wg quejsuod 20T338T) OIL UT SUOTROUNg S4BA Te18f10o PTIQAY
x&::xmm Jo squsuodwod uULaMNGSq .m\.ﬁo ‘0°T)=¥ 3%® SUOT}OBISNNUT Sutpuog -~ *¢2 STL

(b/2{0°0'1)=¥)
X {D Suoijoniaul

Buipuoq *dp — *dz




- 48 -

component. Their contribution to the bonding may be illustrated through
the influence they exert on the more important carbon-carbon bonding of
2p orbitals.

Stfb;g carbon-carbon bonding is contributed by 2p orbitals in small
regions of the Brillouin zone near the boundaries at k and L. A strongly
bonding configuration is shown in Fig. 22 for 2pX orbitals with momenta near
X (k=(1,0,0)1/a). Metal kp orbitals contribute similar, but weaker, metal-
metal-bondingkinteractionsf In addition, however, they hybridize with car-
bon 2pX orbitals and increase the cohesion through the resulting carbon—
metal interactions since the lower hybrid states only are occupied. The
bonding.epx—hpx interaction is shown in Fig. 23. Occupied 2p and 4p states
thus contribute carbon-carbon, metal-metal, and carbon-metal bonding inter-
actions. Energy levels belonging to these states lie primarily in the é&l
band close to X.

Carbon 2p orbitals are occupied at the zone boundary near I also.
The bonding orbitals have their lobes directed along body diagonals of the
erystal and contribute strong carbon-carbon bonding interactions. They
interact also with qe functions of symmetry xy+yz+zx {lobes directed along
body diagonals) to increase further the carbon-metal bonding. Hybrid states
associated with these 2p-3*d interactions lie primarily in the bands lAl and

éA near L. Additional carbon-metal bonding is contributed by 2s-4p inter-

1

actions in the band 2A near L.

L
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V. Discussion. ~

The bonding of TiC, as inferred from the empirical band structure
discussed here, contains contributions from metal-metal, metal-carbon, carbon-
carbon, and ionic interactions, and the composite nature of this bonding is
reflected in its properties. Prominent metal-metal interactions, for example,
cause many of the physical properties of TiC to be similar to those of the
transition metals. It might be expected, therefore, that the properties of TiC
would be closely related to those of its parent metal; titanium. In TiC, however,
these metal-metal interactions are modified by two effects: (l)n Metal-metal
bond strengths are increased by the potential of carbon atoms in the region
of overlap between metal orbitals, and (ii) the number of electrons partici-
pating in such bonds is increased by transfer of electrons from carbon to
metal atomic orbitals.

&his electron transfer would be expected to make TiC more like vana-
dium or chfomium thanrtitanium, but the enhanced metal-metal interéctions pro-
bably increase its melting point and strength to values beyond those of the
first series transition metals, in much the same way that strbnger metal core
'potentials increase the bonding of heavier transition metals within each group.
Thus, the metai-metai interactions alone would make TiC a strongly bonded sub-
stance similar to transition metals of the second series. Since the increased
strength of the metdl-metal bonds may also increase the covalent character in-

trinsic to interactions between partially occupied-orbitals, TiC would be
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expected to have hardness and strength similar to those of the harder tran-
sition metals. The nature and magnitude of observed differences between TiC
and these metals indicate, however, that the other contributions to bonding
must also pléy a significant role. Although the ionic interactions may in-
fluence certain properties, théy appear to contribute iittle to the bonding.
Metal-carbon and carbon-carbon interactions, on thé~other hand, provide
covalent components of bonding which together contribute substaptially to the
great hardness, brittleness, and high melting point exhibited by TiC.

The éiectrical conductivity and other typically metallic transport
properties of TiC appear to arise primarily from the presence of a small con-

duction band near I' dervied from titanium Bde>states rather than, as had

215
been anticipated, from the overlapping bands that have substantially bLs

ch aracter. Details of the band structure near the Fermi level are not clearly
established, however, so that other electron and hole bands can not be ex-
cluded from consideration.

The band structure discussed here suggests that bonding in TiC 1is
determined primarily by metal-metal interactions similar to those in the "hard"
transition metals, with additional covalent Eonding contributed by interactions
involving carbon atoms. Thus, this method of analysis appears to substantiate
the proposals made by Kiessling and Robins rather than that of Rundle.

This interpretation of the bonding in TiC from its band structure may
be used as a basis for digcussing the bonding in other cubic refractory hard

metals also. TiN and TiO, for example, are expected to exhibit bonding proper-

ties that differ from those of TiC mostly because of differences in the energies
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of the electronic states in théir nonmetal atoms. Because the 2p atomic
states of nitrogen lie 2.5 eV lower than the 2p states of carbon, tﬂeir
degree of hybridization with 3d and Ls stetes of titanium in TiN may be
somewhat.éreater than in TiC, and the charge transfer betwe:n atoms may be
smaller. Nitrogen-nitrogen and nitrogen-metal interactions, consequently,
may contfibute somewhat more to the bonding in TiN than do the corresponding
interactions in TiC, whereas the ionic contribution is expected to be weaker.
On thé other hand, the more prominent bonding properties, which arise from
metal—metal‘interactions, should be similar in the two compounds. |

The 2p atomic states of oxygen are 5.2 eV lower than they are in
carbon; thus, the 2p bands of TiO are expected to overlap the lower portion
of the metal 34 5ands. The large number of low—lying 2p states will permit
the transfer of electrons.gggg titanium to oxygen states, thereby decreasing
the bonding due to 4-d4 interactions. Conversely, oxygen-oxygen and titanium-
oxygen bonding will be strengthened, both by'the greater number of occupied
2p states, and by the greater degree of hybridizaﬁion that will result from
the proximity of the oxygen 2p and metal 3d and 4s bands. Although the charge
transfer probably will be in the direction opposite to that in TiC, it may be
- substantially larger and so contribute an impértant fraction of the total
cohesion in TiO. |

It must be %pknowledged that the discussion of bonding presenged
here has only qualitative justification. Ruedenberg (52)’has discussed the

closely related problem for molecules and has indicated some of the difficulties
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and uncertainties in such descriptions of bonding. Despite the limitations
of this method, it does serve to improve the understanding of materials with
complex boﬁding, and it.may be as useful for the transition metals'themselves
as for compounas such as the one discussed here. Goodenough (55) has dis-
cussed the magnetic properties of transition metals and alloys from a related
point of view, but the origins of their diverse bonding characteristics re-
main somewhat obscure. It should be possible now to clarify certain aspects
of this problqm, since numerous studies have been made recently of electronic
energy bands in transition metals. Information derived from such studies
needs to be made available in a form useful to metallurgists who work with
these méterials. The close relationship between band structure and bonding,

illustrated here for TiC, may provide additional physical insight of wvalue

for such purposes.



- 53
Acknowledgements

Some of the work described here was prepared first for a lecture
course given at the University of Washington in the summer of 1966. The
hospitality of Professor J. I. Mueller and the School of Mineral Engineering
during that time is acknowledged with appreciation. Professor J. W. McClure
of the University of Oregon generously gave assistance with certain aspects
of the work. It is a pleasure to acknowiedge also the invaluable advice and
encouragc;ment provided by Dr. A. R. C. Westwocd and J. D. Venables of RIAS
during the preparation of the manuscript. The author is.grateful for

financial support provided by the NASA Research Division, Code RRM, Materials

Research Branch, under contract NASw-1290.



References

(1) 6. G. Hall, Phil. Mag. 43, 338 (1952).

(2) J. C. Slater, in Encyclopedia of Physics, edited by S. Flugge,

(Springer-Verlag, Berlin, 1956).

3 P. Schwarzkopf and R. Kieffer, Refractory Hard Metals {The Macmillan
2

Company, New York, 1963).

() R. Kieffer and F. Benesovsky, Hartstoffe (Springer-Verlag, Vienna, 1963).

(5) E. Dempsey, Phil. Mag. 8, 285 (1963).

(6) A. R. Ubbelohde, Trans. Faraday Soc. 28, 284 (1931).

(7) Ya. S. Umanskii, Ann. sect. anal.-phys.-chim., Inst. chim. gén. (UssR)
16, No. 1. 127 (1943). ‘

(8) R. E. Rundle, Acta Cryst. 1, 180 (1948).

(9) R. Kiessling, Acta Chem. Scand. 4, 209 (1950).

(10) R. Kiessling, Met. Rev. 2, T7 (1957).

(11) D. A. Robins, Powder Met. 1/2, 172 (1958).

(12) H. Bilz, Z. Physik 153, 338 (1959). ' . .

(13) J. ¢. slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

(14) P. Costa and R. R. Conte in Nuclear Metallurgy Symposium (Metallurgical

Society of AIME, New York, 1964), Vol. 10, p. 3.
(15) @. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
(16) V. Ern and A. C. Switendick, Phys. Rev. 137, A1927 (1965).
(17) R. G. Lye and E. M. Logothetis, Phys. Rev. 17, 622 (1966).

(18) N. F. Mott and H. Jones, Theory of the Properties of Metals and

Alloys (Dover Publications, New York, 1958).



(19) A. H. wilson, The Theory of Metals (University Press, Cambridge, 1953),

2nd. ed.

(20) J. R. Reitz, in Solid State Physics, edited by F. Seitz and D. Turnbull,

(Academic Press Inc., New York, 1955) Vol. 1, p. 1 ff.

(21) A. J. Dekker, Solid State Physics (Prentice-Hall, Englewood Cliffs,

New Jersey, 1957).

(22) A. Nussbaum, in Solid State Physics, edited by F. Seitz and D. Turnbull,

(Academic Press Inc., New York, 1966), Vol. 18, p. 165 ff.
(23) M. Miasek, Phys. Rev. 107, 92 (1957).
(2h) w. S.‘Williams; Phys. Rev. 135, A505 (1964).
(25) J. Piper, Ref. 11, p. 29.
(26) w. s. williams, Bull. Am. Phys. Soc. 7, 174 (1962).
(27) R. G. Lye, J. Phys. Chem. Solids 26, k07 (1965).
(28) F. J. Morin, Bell System Technical J. 37, 1047 (1558).
(29) G. L. Humphrey, J. Am. Chem. Soc. T3, 2261 (1951).
(30) W. A. Chupka, J. Berkowitz, C. F. Giese, and M. G. Inghram, J. Phys.

Chem. 62, 611 (1958).

(%) D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements
(American Chemical Society, Washington, D. C., 1956).
(32) K. Ruedenberg, Rev. Mod. Phys. 3k, 326 (1962).

(33) J. B. Goodenough, Phys. Rev. 120, 67 (1960).



